Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.795
Filtrar
1.
Nat Cell Biol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714852

RESUMEN

Upon endoplasmic reticulum (ER) stress, activation of the ER-resident transmembrane protein kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1) initiates a key branch of the unfolded protein response (UPR) through unconventional splicing generation of the transcription factor X-box-binding protein 1 (XBP1s). Activated IRE1 can form large clusters/foci, whose exact dynamic architectures and functional properties remain largely elusive. Here we report that, in mammalian cells, formation of IRE1α clusters is an ER membrane-bound phase separation event that is coupled to the assembly of stress granules (SGs). In response to different stressors, IRE1α clusters are dynamically tethered to SGs at the ER. The cytosolic linker portion of IRE1α possesses intrinsically disordered regions and is essential for its condensation with SGs. Furthermore, disruption of SG assembly abolishes IRE1α clustering and compromises XBP1 mRNA splicing, and such IRE1α-SG coalescence engenders enrichment of the biochemical components of the pro-survival IRE1α-XBP1 pathway during ER stress. Our findings unravel a phase transition mechanism for the spatiotemporal assembly of IRE1α-SG condensates to establish a more efficient IRE1α machinery, thus enabling higher stress-handling capacity.

2.
Sci Data ; 11(1): 452, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704456

RESUMEN

Echeneis naucrates, as known as live sharksucker, is famous for the behavior of attaching to hosts using a highly modified dorsal fin with oval-shaped sucking disc. Here, we generated an improved high-quality chromosome-level genome assembly of E. naucrates using Illumina short reads, PacBio long reads and Hi-C data. Our assembled genome spans 572.85 Mb with a contig N50 of 23.19 Mb and is positioned to 24 pseudo-chromosomes. Additionally, at least one telomere was identified for 23 out of 24 chromosomes. Furthermore, we identified a total of 22,161 protein-coding genes, of which 21,402 genes (96.9%) were annotated successfully with functions. The combination of ab initio predictions and Repbase-based searches revealed that 15.57% of the assembled E. naucrates genome was identified as repetitive sequences. The completeness of the genome assembly and the gene annotation were estimated to be 97.5% and 95.4% with BUSCO analyses. This work enhances the utility of the live sharksucker genome and provides a valuable groundwork for the future study of genomics, biology and adaptive evolution in this species.


Asunto(s)
Cromosomas , Genoma , Anotación de Secuencia Molecular , Animales
3.
EBioMedicine ; 103: 105142, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38691939

RESUMEN

BACKGROUND: Both defects in mismatch repair (dMMR) and high microsatellite instability (MSI-H) have been recognised as crucial biomarkers that guide treatment strategies and disease management in colorectal cancer (CRC). As MMR and MSI tests are being widely conducted, an increasing number of MSI-H tumours have been identified in CRCs with mismatch repair proficiency (pMMR). The objective of this study was to assess the clinical features of patients with pMMR/MSI-H CRC and elucidate the underlying molecular mechanism in these cases. METHODS: From January 2015 to December 2018, 1684 cases of pMMR and 401 dMMR CRCs were enrolled. Of those patients, 93 pMMR/MSI-H were identified. The clinical phenotypes and prognosis were analysed. Frozen and paraffin-embedded tissue were available in 35 patients with pMMR/MSI-H, for which comprehensive genomic and transcriptomic analyses were performed. FINDINGS: In comparison to pMMR/MSS CRCs, pMMR/MSI-H CRCs exhibited significantly less tumour progression and better long-term prognosis. The pMMR/MSI-H cohorts displayed a higher presence of CD8+ T cells and NK cells when compared to the pMMR/MSS group. Mutational signature analysis revealed that nearly all samples exhibited deficiencies in MMR genes, and we also identified deleterious mutations in MSH3-K383fs. INTERPRETATION: This study revealed pMMR/MSI-H CRC as a distinct subgroup within CRC, which manifests diverse clinicopathological features and long-term prognostic outcomes. Distinct features in the tumour immune-microenvironment were observed in pMMR/MSI-H CRCs. Pathogenic deleterious mutations in MSH3-K383fs were frequently detected, suggesting another potential biomarker for identifying MSI-H. FUNDING: This work was supported by the Science and Technology Commission of Shanghai Municipality (20DZ1100101).

4.
Eur J Pharmacol ; 974: 176631, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692425

RESUMEN

OBJECTIVE: Dasatinib and quercetin (D & Q) have demonstrated promise in improving aged-related pathophysiological dysfunctions in humans and mice. Herein we aimed to ascertain whether the heat stress (HS)-induced cognitive deficits in aged or even young adult male mice can be reduced by D & Q therapy. METHODS: Before the onset of HS, animals were pre-treated with D & Q or placebo for 3 consecutive days every 2 weeks over a 10-week period. Cognitive function, intestinal barrier permeability, and blood-brain barrier permeability were assessed. RESULTS: Compared to the non-HS young adult male mice, the HS young adult male mice or the aged male mice had significantly lesser extents of the exacerbated stress reactions, intestinal barrier disruption, endotoxemia, systemic inflammation and oxidative stress, blood-brain barrier disruption, hippocampal inflammation and oxidative stress, and cognitive deficits evaluated at 7 days post-HS. All the cognitive deficits and other syndromes that occurred in young adult HS mice or in aged HS mice were significantly attenuated by D & Q therapy (P < 0.01). Compared to the young adult HS mice, the aged HS mice had significantly (P < 0.01) higher severity of cognitive deficits and other related syndromes. CONCLUSIONS: First, our data show that aged male mice are more vulnerable to HS-induced cognitive deficits than those of the young adult male mice. Second, we demonstrate that a combination of D and Q therapy attenuates cognitive deficits in heat stressed aged or young adult male mice via broad normalization of the brain-gut-endotoxin axis function.

5.
Small ; : e2312218, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716754

RESUMEN

Room-temperature phosphorescent materials, renowned for their long luminescence lifetimes, have garnered significant attention in the field of optical materials. However, the challenges posed by thermally induced quenching have significantly hindered the advancement of luminescence efficiency and stability. In this study, thermally enhanced phosphorescent carbon nanodots (CND) are developed by incorporating them into fiber matrices. Remarkably, the phosphorescence lifetime of the thermally enhanced CND exhibits a twofold enhancement, increasing from 326 to 753 ms, while the phosphorescence intensity experienced a tenfold enhancement, increasing from 25 to 245 as the temperature increased to 373 K. Rigid fiber matrices can effectively suppress the non-radiative transition rate of triplet excitons, while high temperatures can desorb oxygen adsorbed on the surface of the CND, disrupting the interaction between the CND and oxygen. Consequently, a thermally enhanced phosphorescence is obtained. In addition, benefiting from the thermally enhanced phosphorescence property of CND, a warning indicator with an anti-counterfeiting function for monitoring cold-chain logistics is demonstrated based on CND.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38716902

RESUMEN

A scene that contains both old and instant events with a clear motion trail is visually intriguing and dynamic, which can convey a sense of change, transition, or evolution. Developing an eco-friendly delay display system offers a powerful tool for fusing old and instant events, which can be used for visualizing motion trails. Herein, we brighten triplet excitons of carbon nanodots (CNDs) and increase their emission yield by a multidimensional confinement strategy, and the CND-based delay display array is demonstrated. The intense confinement effects via multidimensional confinement strategy suppress nonradiative transitions, and 240% enhancement in the phosphorescence efficiency and 260% enhancement in the lifetime of the CNDs are thus realized. Considering their distinctive phosphorescence performances, a delay display array containing a 4 × 4 CND-based delay lighting device is demonstrated, which can provide ultralong phosphorescence over 7 s, and the motion that occurred in different timelines is recorded clearly. This finding will motivate the investigation of phosphorescent CNDs in motion trail recognition.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38717638

RESUMEN

BACKGROUND: Cardiac hypertrophy is the common pathological process of multiple cardiovascular diseases. However, the molecular mechanisms of cardiac hypertrophy are unclear. Long non-coding RNA (lncRNA), a newly discovered type of transcript that has been demonstrated to function as crucial regulators in the development of cardiovascular diseases. This study revealed a novel regulatory pathway of lncRNA in cardiac hypertrophy. METHODS: The cardiac hypertrophy models were established by transverse aortic constriction (TAC) in mice and angiotensin II (Ang II) in HL-1 cardiomyocytes. Adeno-associated virus 9 (AAV9) in vivo and lncRNA Gm15834 and shRNA plasmids in vitro were used to overexpress and knock down lncRNA Gm15834. The myocardial tissue structure, cardiomyocyte area, cardiac function, protein expressions, and binding of lncRNA Gm15834 and Src-associated substrate during mitosis of 68 KDa (Sam68) were detected by hematoxylin and eosin (HE) staining, immunofluorescence staining, echocardiography, western blot and RNA immunoprecipitation (RIP), respectively. RESULTS: In cardiac hypertrophy models, inhibiting lncRNA Gm15834 could decrease Sam68 expression and nuclear factor kappa-B (NF-κB) mediated inflammatory activities in vivo and in vitro, but overexpressing lncRNA Gm15834 showed the opposite results. RIP experiments validated the binding activities between lncRNA Gm15834 and Sam68. Overexpression of Sam68 could counteract the anti-hypertrophy effects of lncRNA Gm15834 knockdown. Meanwhile, in vivo inhibition of lncRNA Gm15834 could inhibit Sam68 expression, reduce NF-κB mediated inflammatory activity and attenuate cardiac hypertrophy. CONCLUSION: Our study revealed a novel regulatory axis of cardiac hypertrophy, which comprised lncRNA Gm15834/Sam68/NF-κB/inflammation, shedding a new light for identifying therapy target of cardiac hypertrophy in clinic.

8.
World J Gastrointest Surg ; 16(4): 1208-1214, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38690049

RESUMEN

BACKGROUND: Lymphangiomas in the gastrointestinal tract are extremely rare in adults. As a benign lesion, small intestine lymphangiomas often remain asymptomatic and pose challenges for definitive diagnosis. However, lymphangiomas can give rise to complications such as abdominal pain, bleeding, volvulus, and intussusception. Here, we report a case of jejunal cavernous lymphangioma that presented with intermittent melena and refractory anemia in a male adult. CASE SUMMARY: A 66-year-old man presented with intermittent melena, fatigue and refractory anemia nine months prior. Esophagogastroduodenoscopy and colonoscopy were performed many times and revealed no apparent bleeding. Conservative management, including transfusion, hemostasis, gastric acid secretion inhibition and symptomatic treatment, was performed, but the lesions tended to recur shortly after surgery. Ultimately, the patient underwent capsule endoscopy, which revealed a more than 10 cm lesion accompanied by active bleeding. After single-balloon enteroscopy and biopsy, a diagnosis of jejunal cavernous lymphangioma was confirmed, and the patient underwent surgical resection. No complications or recurrences were observed postoperatively. CONCLUSION: Jejunal cavernous lymphangioma should be considered a cause of obscure gastrointestinal bleeding. Capsule endoscopy and single-balloon enteroscopy can facilitate diagnosis. Surgical resection is an effective management method.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124367, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38692111

RESUMEN

As an important component ofbiogeochemical cyclein coastal ecosystems, sediments are the sink of heavy metals. Therefore, distribution and dynamics of heavy metals in sediments could assess ecological quality and predict ecological risks. In the new era, rapid and green technology are highly needed, especially that could determine multi-parameters simultaneously. Here, we explored a new method to rapidly determine concentrations of heavy metals in sediments by visible and near infrared reflectance spectroscopy (VIRS).We sampled sediments in the Jiaozhou Bay, China, collected their reflectance spectra, and measured concentrations of four heavy metals (As, Cr, Cu, and Zn). Heavy metal models were established and evaluated using substances highly correlated with heavy metals. This study provides an effective reference for rapid analysis of As, Cr, Cu, and Zn simultaneously in sediments, at least in the Jiaozhou Bay, and for ecological environment protection and resource development of the Jiaozhou Bay.

10.
Int J Surg ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38704621

RESUMEN

BACKGROUND: The role of conversion surgery in patients with unresectable biliary tract cancer (BTC) who responded positively to PD-1/PD-L1 inhibitor-based therapy remains unclear. This study aimed to assess the outcomes in patients with or without conversion surgery. METHODS: In this cohort study, patients with advanced BTC who received combination therapy with PD-1/PD-L1 inhibitors from July 2019 to January 2023 were retrospectively. Patients who exhibited positive responses and met the criteria for conversion surgery were enrolled, and their surgical and oncological outcomes were analyzed. RESULTS: Out of 475 patients, 34 who met the conversion resection criteria were enrolled. The median follow-up was 40.5 months post-initiation of systemic therapy. Ultimately, 13 patients underwent conversion surgery, while 21 received continuation of systemic treatment alone (non-surgical group). The median interval from the initial antitumor therapy to surgery was 6.7 (interquartile range [IQR] 4.9-9.2) months. Survival with conversion surgery was significantly longer than the non-surgical cohort, with a median progression-free survival (PFS) (unreached vs. 12.4 mo; hazard ratio 0.17 [95% CI 0.06-0.48]; P=0.001) and overall survival (OS) (unreached vs. 22.4 mo; hazard ratio 0.28 [95% CI 0.09-0.84]; P=0.02), respectively. After a median postoperative follow-up of 32.2 months in the surgical cohort, 8 patients survived without recurrence. The estimated 3-year OS, PFS and recurrence-free survival rate in the surgical cohort were 59.9%, 59.2% and 60.6%, respectively. The R0 resection rate reached 92.3%, with 2 achieving a pathological complete response. One patient experienced a Clavien-Dindo grade 3 complication without surgery-related mortality. No serious adverse events or surgical delays were observed. Multivariate analysis indicated that conversion surgery was independently associated with OS (P=0.03) and PFS survival (P=0.003). CONCLUSION: Conversion surgery appears safe and offers survival benefits to patients responding to immune checkpoint inhibitors (ICIs)-based combinations. However, further studies are required to validate this strategy in the era of immunotherapy.

11.
Mater Today Bio ; 26: 101064, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38698883

RESUMEN

Autologous nerve transplantation (ANT) is currently considered the gold standard for treating long-distance peripheral nerve defects. However, several challenges associated with ANT, such as limited availability of donors, donor site injury, mismatched nerve diameters, and local neuroma formation, remain unresolved. To address these issues comprehensively, we have developed porous poly(lactic-co-glycolic acid) (PLGA) electrospinning fiber nerve guide conduits (NGCs) that are optimized in terms of alignment and conductive coating to facilitate peripheral nerve regeneration (PNR) under electrical stimulation (ES). The physicochemical and biological properties of aligned porous PLGA fibers and poly(3,4-ethylenedioxythiophene):polystyrene sodium sulfonate (PEDOT:PSS) coatings were characterized through assessments of electrical conductivity, surface morphology, mechanical properties, hydrophilicity, and cell proliferation. Material degradation experiments demonstrated the biocompatibility in vivo of electrospinning fiber films with conductive coatings. The conductive NGCs combined with ES effectively facilitated nerve regeneration. The designed porous aligned NGCs with conductive coatings exhibited suitable physicochemical properties and excellent biocompatibility, thereby significantly enhancing PNR when combined with ES. This combination of porous aligned NGCs with conductive coatings and ES holds great promise for applications in the field of PNR.

12.
Nat Commun ; 15(1): 3805, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714664

RESUMEN

Genomic alterations that activate Fibroblast Growth Factor Receptor 2 (FGFR2) are common in intrahepatic cholangiocarcinoma (ICC) and confer sensitivity to FGFR inhibition. However, the depth and duration of response is often limited. Here, we conduct integrative transcriptomics, metabolomics, and phosphoproteomics analysis of patient-derived models to define pathways downstream of oncogenic FGFR2 signaling that fuel ICC growth and to uncover compensatory mechanisms associated with pathway inhibition. We find that FGFR2-mediated activation of Nuclear factor-κB (NF-κB) maintains a highly glycolytic phenotype. Conversely, FGFR inhibition blocks glucose uptake and glycolysis while inciting adaptive changes, including switching fuel source utilization favoring fatty acid oxidation and increasing mitochondrial fusion and autophagy. Accordingly, FGFR inhibitor efficacy is potentiated by combined mitochondrial targeting, an effect enhanced in xenograft models by intermittent fasting. Thus, we show that oncogenic FGFR2 signaling drives NF-κB-dependent glycolysis in ICC and that metabolic reprogramming in response to FGFR inhibition confers new targetable vulnerabilities.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Glucosa , Glucólisis , FN-kappa B , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Transducción de Señal , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Humanos , FN-kappa B/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Animales , Glucólisis/efectos de los fármacos , Glucosa/metabolismo , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Ratones , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Pirimidinas/farmacología , Autofagia/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
13.
Adv Mater ; : e2311845, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720198

RESUMEN

Sweat gland (SwG) regeneration is crucial for the functional rehabilitation of burn patients. In vivo chemical reprogramming that harnessing the patient's own cells in damaged tissue is of substantial interest to regenerate organs endogenously by pharmacological manipulation, which could compensate for tissue loss in devastating diseases and injuries, e.g., burns. However, achieving in vivo chemical reprogramming is challenging due to the low reprogramming efficiency and an unfavorable tissue environment. Herein, we have developed a functionalized proteinaceous nanoformulation delivery system containing prefabricated epidermal growth factor (EGF) structure for on-demand delivery of a cocktail of seven SwG reprogramming components to the dermal site. Such a chemical reprogramming system can efficiently induce the conversion of epidermal keratinocytes into SwG myoepithelial cells, resulting in successful in situ regeneration of functional SwGs. Notably, in vivo chemical reprogramming of SwGs is achieved for the first time with an impressive efficiency of 30.6%, surpassing previously reported efficiencies. Overall, our proteinaceous nanoformulation provides a platform for coordinating the target delivery of multiple pharmacological agents and facilitating in vivo SwG reprogramming by chemicals. This advancement greatly improves the clinical accessibility of in vivo reprogramming and offers a non-surgical, non-viral, and cell-free strategy for in situ SwG regeneration. This article is protected by copyright. All rights reserved.

14.
Science ; 384(6695): 557-563, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696573

RESUMEN

Hydrogels are an attractive category of biointerfacing materials with adjustable mechanical properties, diverse biochemical functions, and good ionic conductivity. Despite these advantages, their application in electronics has been restricted because of their lack of semiconducting properties, and they have traditionally only served as insulators or conductors. We developed single- and multiple-network hydrogels based on a water-soluble n-type semiconducting polymer, endowing conventional hydrogels with semiconducting capabilities. These hydrogels show good electron mobilities and high on/off ratios, enabling the fabrication of complementary logic circuits and signal amplifiers with low power consumption and high gains. We demonstrate that hydrogel electronics with good bioadhesive and biocompatible interface can sense and amplify electrophysiological signals with enhanced signal-to-noise ratios.

16.
Arch Microbiol ; 206(5): 241, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698267

RESUMEN

The epidemic of stripe rust, caused by the pathogen Puccinia striiformis f. sp. tritici (Pst), would reduce wheat (Triticum aestivum) yields seriously. Traditional experimental methods are difficult to discover the interaction between wheat and Pst. Multi-omics data analysis provides a new idea for efficiently mining the interactions between host and pathogen. We used 140 wheat-Pst RNA-Seq data to screen for differentially expressed genes (DEGs) between low susceptibility and high susceptibility samples, and carried out Gene Ontology (GO) enrichment analysis. Based on this, we constructed a gene co-expression network, identified the core genes and interacted gene pairs from the conservative modules. Finally, we checked the distribution of Nucleotide-binding and leucine-rich repeat (NLR) genes in the co-expression network and drew the wheat NLR gene co-expression network. In order to provide accessible information for related researchers, we built a web-based visualization platform to display the data. Based on the analysis, we found that resistance-related genes such as TaPR1, TaWRKY18 and HSP70 were highly expressed in the network. They were likely to be involved in the biological processes of Pst infecting wheat. This study can assist scholars in conducting studies on the pathogenesis and help to advance the investigation of wheat-Pst interaction patterns.


Asunto(s)
Redes Reguladoras de Genes , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Puccinia , Triticum , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Puccinia/genética , Resistencia a la Enfermedad/genética , Ontología de Genes , Regulación de la Expresión Génica de las Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Basidiomycota/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica
17.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711334

RESUMEN

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Infarto del Miocardio , Miocitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Humanos , Animales , Ratones , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Daño por Reperfusión Miocárdica/terapia , Daño por Reperfusión Miocárdica/metabolismo , Modelos Animales de Enfermedad , Neovascularización Fisiológica , Células Cultivadas
20.
Clin Otolaryngol ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558499

RESUMEN

BACKGROUND: Laryngeal leukoplakia (LL) is a white lesion with high potential of recurrence and malignant transformation. Currently, CO2 laser has become the primary surgical treatment for LL, and the recurrence and malignant transformation rates after treatment vary widely. OBJECTIVE: We performed a systematic review and meta-analysis dedicated to evaluating the rates of recurrence and malignant transformation of LL lesions treated with CO2 laser and exploring relevant risk factors for recurrence or malignant transformation. METHODS: Literature searches were conducted on ProQuest, PubMed, Web of Science, Ovid Medline, Embase, and Cochrane databases. Some articles identified through hand searching were included. RESULTS: A total of 14 articles and 1462 patients were included in this review. Pooled results showed that the overall recurrence rate was 15%, and the malignant transformation rate was 3%. Subgroup analysis showed that the dysplasia grade was not a significant risk factor for the recurrence and malignant transformation of LL (P > .05). CONCLUSIONS: The results of this systematic review and meta-analysis suggest that the CO2 laser is a safe and effective surgical instrument for the excision of LL, which yields low rates of recurrence and malignant transformation. The risk factors relevant to recurrence or malignant transformation remain unclear and require further investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA